神经网络与深度学习-邱锡鹏

主要介绍神经网络与深度学习中的基础知识、主要模型(前馈网络、卷积网络、循环网络等)以及在计算机视觉、自然语言处理等领域的应用。全书共15章,可以作为一学期的课程进行讲授。

第1章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者对相关知识进行全面的了解。
第2、3章介绍了机器学习的基础知识。
第4、5、6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络。在第6章中略提了下图网络的内容。
第7章介绍神经网络的优化与正则化方法。
第8章介绍神经网络中的注意力机制和外部记忆。
第9章简要介绍了一些无监督学习方法。
第10章中介绍一些和模型独立的机器学习方法:集成学习、协同学习、多任务学习、迁移学习、终生学习、小样本学习、元学习等。这些都是目前深度学习的难点和热点问题。
第11章介绍了概率图模型的基本概念,为后面的章节进行铺垫。
第12章介绍两种早期的深度学习模型:玻尔兹曼机和深度信念网络。
第13章介绍最近两年发展十分迅速的深度生成模型:变分自编码器和对抗生成网络。
第14章介绍了深度强化学习的知识。
第15章介绍了应用十分广泛的序列生成模型。

VIP免费

已有5人支付

相关说明:
1、链接失效后,请通过客服QQ告知站长;
2、资源来源于网络公开发表文件,所有资料仅供学习交流;
3、学分仅用来维持网站运营,性质为用户友情赞助,并非购买文件费用;
4、如侵犯您的权益,请联系管理员处理(QQ:5603324;Email:webmaster#day8.cc)。
星期八资源网 » 神经网络与深度学习-邱锡鹏